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Cloud computing has become a compelling paradigm built on compute
and storage virtualization technologies. The current virtualization solu-
tion in the Cloud widely relies on hypervisor-based technologies. Given
the recent booming of the container ecosystem, the container-based vir-
tualization starts receiving more attention for being a promising alter-
native. Although the container technologies are generally considered to
be lightweight, no virtualization solution is ideally resource-free, and
the corresponding performance overheads will lead to negative impacts
on the quality of Cloud services. To facilitate understanding container
technologies from the performance engineering’s perspective, we con-
ducted two-stage performance investigations into Docker containers as
a concrete example. At the first stage, we used a physical machine
with “just-enough” resource as a baseline to investigate the performance
overhead of a standalone Docker container against a standalone virtual
machine (VM). With findings contrary to the related work, our evalua-
tion results show that the virtualization’s performance overhead could
vary not only on a feature-by-feature basis but also on a job-to-job basis.
Moreover, the hypervisor-based technology does not come with higher
performance overhead in every case. For example, Docker containers par-
ticularly exhibit lower QoS in terms of storage transaction speed. At the
ongoing second stage, we employed a physical machine with “fair-enough”
resource to implement a container-based MapReduce application and
try to optimize its performance. In fact, this machine failed in afford-
ing VM-based MapReduce clusters in the same scale. The performance
tuning results show that the effects of different optimization strategies
could largely be related to the data characteristics. For example, LZO
compression can bring the most significant performance improvement
when dealing with text data in our case.

1 Introduction

The container technologies have widely been accepted
for building next-generation Cloud systems. This pa-
per investigates the performance overhead of container-
based virtualization and the performance optimization
of a container-based MapReduce application, which is
an extension of work originally presented in the 31st

IEEE International Conference on Advanced Informa-
tion Networking and Application (AINA 2017) [1].

The Cloud has been considered to be able to pro-
vide computing capacity as the next utility in our mod-
ern daily life. In particular, it is the virtualization
technologies that enable Cloud computing to be a new
paradigm of utility, by playing various vital roles in
supporting Cloud services, ranging from resource iso-
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lation to resource provisioning. The existing virtu-
alization technologies can roughly be distinguished
between the hypervisor-based and the container-based
solutions. Considering their own resource consump-
tion, both virtualization solutions inevitably introduce
performance overheads to running Cloud services, and
the performance overheads could then lead to negative
impacts to the corresponding quality of service (QoS).
Therefore, it would be crucial for both Cloud providers
(e.g., for improving infrastructural efficiency) and con-
sumers (e.g., for selecting services wisely) to under-
stand to what extend a candidate virtualization solu-
tion incurs influence on the Cloud’s QoS.

Recall that hypervisor-driven virtual machines
(VMs) require guest operating systems (OS), while con-
tainers can share a host OS. Suppose physical machines,
VMs and containers are three candidate resource types
for a particular Cloud service, a natural hypothesis
could be:

The physical machine-based service has the best
quality among the three resource types, while the
container-based service performs better than the
hypervisor-based VM service.

Unfortunately, to the best of our knowledge, there
is little quantitative evidence to help test this hypothe-
sis in an “apple-to-apple” manner, except for the sim-
ilar qualitative discussions. Furthermore, the perfor-
mance overhead of hypervisor-based and container-
based virtualization technologies can even vary in prac-
tice depending on different service circumstance (e.g.,
uncertain workload densities and resource competi-
tions). Therefore, we decided to conduct a twofold
investigation into containers from the performance’s
perspective. Firstly, we used a physical machine with
“just-enough” resource as a baseline to quantitatively
investigate and compare the performance overheads
between the container-based and hypervisor-based vir-
tualizations. In particular, since Docker is currently
the most popular container solution [2] and VMWare
is one of the leaders in the hypervisor market [3], we
chose Docker and VMWare Workstation 12 Pro to rep-
resent the two virtualization solutions respectively.
Secondly, we implemented a container-based MapRe-
duce cluster on a physical machine with “fair-enough”
resource to investigate the performance optimization
of our MapReduce application at least in this use case.

According to the clarifications in [4, 5], our qualita-
tive investigations can be regulated by the discipline of
experimental computer science (ECS). By employing
ECS’s recently available Domain Knowledge-driven
Methodology (DoKnowMe) [6], we experimentally ex-
plored the performance overheads of different virtual-
ization solutions on a feature-by-feature basis, i.e. the
communication-, computation-, memory- and storage-
related QoS aspects. As for the investigation into
performance optimization, we were concerned with
the task timeout, out-of-band heartbeat, buffer setting,
stream merging, data compression and the cluster size
of our container-based MapReduce application.

The experimental results and analyses of perfor-
mance overhead investigation generally advocate the
aforementioned hypothesis. However, the hypothe-
sis is not true in all the cases. For example, we do
not see computation performance difference between
the three resource types for solving a combinatorially
hard chess problem; and the container exhibits even
higher storage performance overhead than the VM
when reading/writing data byte by byte. Moreover,
we find that the remarkable performance loss incurred
by both virtualization solutions usually appears in the
performance variability.

The performance optimization investigation re-
veals that various optimization strategies might take
different effects due to different data characteristics
of a container-based MapReduce application. For ex-
ample, dealing with text data can significantly benefit
from enabling data compression, whereas buffer set-
tings have little effect for dealing with relatively small
amount of data.

Overall, our work makes fourfold contributions to
the container ecosystem, as specified below.

(1) Our experimental results and analyses can help
both researchers and practitioners to better un-
derstand the fundamental performance of the
present container-based and hypervisor-based
virtualization technologies. In fact, the perfor-
mance evaluation practices in ECS can roughly
be distinguished between two stages: the first
stage is to reveal the primary performance of spe-
cific (system) features, while the second stage is
generally based on the first-stage evaluation to
investigate real-world application cases. Thus,
this work can be viewed as a foundation for more
sophisticated evaluation studies in the future.

(2) Our method of calculating performance over-
head can easily be applied or adapted to differ-
ent evaluation scenarios by others. The literature
shows that the “performance overhead” has nor-
mally been used in the context of qualitative dis-
cussions. By quantifying such an indicator, our
study essentially provides a concrete lens into
the case of performance comparisons.

(3) As a second-stage evaluation work, our case
study on the performance optimization of a
MapReduce application both demonstrates a
practical use case and supplies an easy-to-
replicate scenario for engineering performance
of container-based applications. In other words,
this work essentially proposed a characteristic-
consistent data set (i.e. Amazon’s spot price his-
tory that is open to the public) for future perfor-
mance engineering studies.

(4) The whole evaluation logic and details reported
in this paper can be viewed as a reusable tem-
plate of evaluating Docker containers. Since
the Docker project is still quickly growing [7],
the evaluation results could be gradually out of
date. Given this template, future evaluations
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can be conveniently repeated or replicated even
by different evaluators at different times and
locations. More importantly, by emphasizing
the backend logic and evaluation activities, the
template-driven evaluation implementations (in-
stead of results only) would be more traceable
and comparable.

The remainder of this paper is organized as follows.
Section 2 briefly summarizes the background knowl-
edge of container-based and the hypervisor-based vir-
tualization technologies. Section 3 introduces the
fundamental performance evaluation of a single con-
tainer. The detailed performance overhead investi-
gation is divided into two reporting parts, namely
pre-experimental activities and experimental results &
analyses, and they are correspondingly described into
Section 3.2 and 3.3 respectively. Section 4 explains
our case study on the performance optimization of
a container-based MapReduce application. Section 5
highlights the existing work related to container’s per-
formance evaluation. Conclusions and some future
work are discussed in Section 6.

2 Hypervisor-based vs. Container-
based Virtualization

When it comes to the Cloud virtualization, the de facto
solution is to employ the hypervisor-based technolo-
gies, and the most representative Cloud service type
is offering VMs [8]. In this virtualization solution, the
hypervisor manages physical computing resources and
makes isolated slices of hardware available for creat-
ing VMs [7]. We can further distinguish between two
types of hypervisors, namely the bare-metal hypervisor
that is installed directly onto the computing hardware,
and the hosted hypervisor that requires a host OS. To
make a better contrast between the hypervisor-related
and container-related concepts, we particularly empha-
size the second hypervisor type, as shown in Figure
1a. Since the hypervisor-based virtualization provides
access to physical hardware only, each VM needs a com-
plete implementation of a guest OS including the bina-
ries and libraries necessary for applications [9]. As a
result, the guest OS will inevitably incur resource com-
petition against the applications running on the VM
service, and essentially downgrade the QoS from the
application’s perspective. Moreover, the performance
overhead of the hypervisor would also be passed on to
the corresponding Cloud services and lead to negative
impacts on the QoS.

To relieve the performance overhead of hypervisor-
based virtualization, researchers and practition-
ers recently started promoting an alternative and
lightweight solution, namely container-based virtual-
ization. In fact, the foundation of the container technol-
ogy can be traced back to the Unix chroot command
in 1979 [9], while this technology is eventually evolved
into virtualization mechanisms like Linux VServer,
OpenVZ and Linux Containers (LXC) along with the

booming of Linux [10]. Unlike the hardware-level so-
lution of hypervisors, containers realize virtualization
at the OS level and utilize isolated slices of the host OS
to shield their contained applications [9]. In essence,
a container is composed of one or more lightweight
images, and each image is a prebaked and replaceable
file system that includes necessary binaries, libraries
or middlewares for running the application. In the
case of multiple images, the read-only supporting file
systems are stacked on top of each other to cater for the
writable top-layer file system [2]. With this mechanism,
as shown in Figure 1b, containers enable applications
to share the same OS and even binaries/libraries when
appropriate. As such, compared to VMs, containers
would be more resource efficient by excluding the exe-
cution of hypervisor and guest OS, and more time effi-
cient by avoiding booting (and shutting down) a whole
OS [11, 7]. Nevertheless, it has been identified that the
cascading layers of container images come with inher-
ent complexity and performance penalty [12]. In other
words, the container-based virtualization technology
could also negatively impact the corresponding QoS
due to its performance overhead.
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(b) Container-based virtual ser-
vice.

Figure 1: Different architectures of hypervisor-based
and container-based virtual services.

3 Fundamental Performance Eval-
uation of a Single Container

3.1 Performance Evaluation Methodology

Since the comparison between the container’s and the
VM’s performance overheads is essentially based on
their performance evaluation, we define our work as
a performance evaluation study that belongs to the
field of experimental computer science [4, 5]. Con-
sidering that “evaluation methodology underpins all
innovation in experimental computer science” [13], we
employ the methodology DoKnowMe [6] to guide eval-
uation implementations in this study. DoKnowMe is
an abstract evaluation methodology on the analogy of
“class” in object-oriented programming. By integrating
domain-specific knowledge artefacts, DoKnowMe can
be customized into specific methodologies (by analogy
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of “object”) to facilitate evaluating different concrete
computing systems. The skeleton of DoKnowMe is
composed of ten generic evaluation steps, as listed
below.

(1) Requirement recognition;

(2) Service feature identification;

(3) Metrics and benchmarks listing;

(4) Metrics and benchmarks selection;

(5) Experimental factors listing;

(6) Experimental factors selection;

(7) Experiment design;

(8) Experiment implementation;

(9) Experimental analysis;

(10) Conclusion and documentation.

Each evaluation step further comprises a set of ac-
tivities together with the corresponding evaluation
strategies. The elaboration on these evaluation steps is
out of the scope of this paper. To better structure our
report, we divide the evaluation implementation into
pre-experimental activities and experimental results
& analyses.

3.2 Pre-Experimental Activities

3.2.1 Requirement Recognition

Following DoKnowMe, the whole evaluation imple-
mentation is essentially driven by the recognized re-
quirements. In general, the requirement recognition is
to define a set of specific requirement questions both
to facilitate understanding the real-world problem and
to help achieve clear statements of the corresponding
evaluation purpose. In this case, the basic requirement
is to give a fundamental quantitative comparison be-
tween the hypervisor-based and container-based virtu-
alization solutions. As mentioned previously, we con-
cretize these two virtualization solutions into VMWare
Workstation VMs and Docker containers respectively,
in order to facilitate our evaluation implementation
(i.e., using a physical machine as a baseline to investi-
gate the performance overhead of a Docker container
against a VM). Thus, such a requirement can further
be specified into two questions:

RQ1: How much performance overhead does a
standalone Docker container introduce over
its base physical machine?

RQ2: How much performance overhead does a
standalone VM introduce over its base physi-
cal machine?

Considering that virtualization technologies could
lead to variation in performance of Cloud services [14],
we are also concerned with the container’s and VM’s
potential variability overhead besides their average
performance overhead:

RQ3: How much performance variability overhead
does a standalone Docker container intro-
duce over its base physical machine during a
particular period of time?

RQ4: How much performance variability overhead
does a standalone VM introduce over its base
physical machine during a particular period
of time?

3.2.2 Service Feature Identification

Recall that we treat Docker containers as an alternative
type of Cloud service to VMs. By using the taxonomy
of Cloud services evaluation [15], we directly list the
service feature candidates, as shown in Figure 2. Note
that a service feature is defined as a combination of a
physical property and its capacity, and we individually
examine the four physical properties in this study:

• Communication

• Computation

• Memory

• Storage
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Figure 2: Candidate service features for evaluating
Cloud service performance (cf. [15]).

3.2.3 Metrics/Benchmarks Listing and Selection

The selection of evaluation metrics usually depends on
the availability of benchmarks. According to our previ-
ous experience of Cloud services evaluation, we choose
relatively lightweight and popular benchmarks to try
to minimize the benchmarking overhead, as listed in
Table 1. For example, Iperf has been identified to be
able to deliver more precise results by consuming less
system resources. In fact, except for STREAM that is
the de facto memory evaluation benchmark included
in the HPC Challenge Benchmark (HPCC) suite, the
other benchmarks are all Ubuntu’s built-in utilities.
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Physical
Property

Capacity Metric Benchmark Version

Communication Data Throughput Iperf 2.0.5

Computation (Latency) Score HardInfo 0.5.1

Memory Data Throughput STREAM 5.10

Storage Transaction Speed Bonnie++ 1.97.1

Storage Data Throughput Bonnie++ 1.97.1

Table 1: Metrics and benchmarks for this evaluation
study.

In particular, although Bonnie++ only measures
the amount of data processed per second, the disk I/O
transactions are on a byte-by-byte basis when accessing
small size of data. Therefore, we consider to measure
storage transaction speed when operating byte-size
data and measure storage data throughput when oper-
ating block-size data. As for the property computation,
considering the diversity in CPU jobs (e.g., integer
and floating-point calculations), we employ HardInfo
that includes six micro-benchmarks to generate perfor-
mance scores, as briefly explained in Table 2. HardInfo
is a tool package that can summarize the information
about the host machine’s hardware and operating sys-
tem, as well as benchmarking the CPU. In this study,
we employ HardInfo for CPU benchmarking only.

Benchmark Brief Explanation

CPU Blowfish Encrypting blocks of random data using the
Blowfish algorithm.

CPU
CryptoHash*

Checking the ability of the computer to find
the hash of a specific test file.

CPU
Fibonacci

Calculating the 42nd Fibonacci number.

CPU
N-Queens

Solving the combinatorially hard chess
problem of placing N queens on an N ×N
chessboard such that no queen can attack
any other.

FPU FFT Computing a fast Fourier transform.

FPU
Raytracing

Generating an image by tracing the path of
light through pixels in an image plane and
simulating the effects of its encounters with
virtual objects.

*The higher the better. (The lower the better for the others.)

Table 2: Micro-benchmarks included in HardInfo.

When it comes to the performance overhead, we
use the business domain’s Overhead Ratio1 as an anal-
ogy to its measurement. In detail, we treat the per-
formance loss compared to a baseline as the expense,
while imagining the baseline performance to be the
overall income, as defined in Equation (1).

Op =
|Pm − Pb |

Pb
× 100% (1)

where Op refers to the performance overhead; Pm de-
notes the benchmarking result as a measurement of a
service feature; Pb indicates the baseline performance
of the service feature; and then |Pm − Pb | represents
the corresponding performance loss. Note that the

physical machine’s performance is used as the base-
line in our study. Moreover, considering possible ob-
servational errors, we allow a margin of error for the
confidence level as high as 99% with regarding to the
benchmarking results. In other words, we will ignore
the difference between the measured performance and
its baseline if the calculated performance overhead is
less than 1% (i.e. if Op < 1%, then Pm = Pb).

3.2.4 Experimental Factor Listing and Selection

The identification of experimental factors plays a
prerequisite role in the following experimental de-
sign. More importantly, specifying the relevant fac-
tors would be necessary for improving the repeatabil-
ity of experimental implementations. By referring to
the experimental factor framework of Cloud services
evaluation [16], we choose the resource- and workload-
related factors as follows.

The resource-related factors:

• Resource Type: Given the evaluation requirement,
we have essentially considered three types of re-
sources to support the imaginary Cloud service,
namely physical machine, container and VM.

• Communication Scope: We test the communica-
tion between our local machine and an Amazon
EC2 t2.micro instance. The local machine is lo-
cated in our broadband lab at Lund University,
and the EC2 instance is from Amazon’s available
zone ap-southeast-1a within the region Asia Pa-
cific (Singapore).

• Communication Ethernet Index: Our local side
uses a Gigabit connection to the Internet, while
the EC2 instance at remote side has the “Low to
Moderate” networking performance defined by
Amazon.

• CPU Index: The physical machine’s CPU model
is Intel Core™2 Duo Processor T7500. The pro-
cessor has two cores with the 64-bit architecture,
and its base frequency is 2.2 GHz. We allocate
both CPU cores to the standalone VM upon the
physical machine.

• Memory Size: The physical machine is equipped
with a 3GB DDR2 SDRAM. When running the
VMWare Workstation Pro without launching any
VM, “watch -n 5 free -m” shows a memory
usage of 817MB while leaving 2183MB free in
the physical machine. Therefore, we set the mem-
ory size to 2GB for the VM to avoid (at least to
minimize) the possible memory swapping.

• Storage Size: There are 120GB of hard disk in the
physical machine. Considering the space usage
by the host operating system, we allocate 100GB
to the VM.

• Operating System: Since Docker requires a 64-
bit installation and Linux kernels older than

1http://www.investopedia.com/terms/o/overhead-ratio.asp
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Figure 3: Experimental blueprint for evaluating three types of resources in this study.

3.10 do not support all the features for run-
ning Docker containers, we choose the latest 64-
bit Ubuntu 15.10 as the operating system for
both the physical machine and the VM. In ad-
dition, according to the discussions about base
images in the Docker community [17, 18], we
intentionally set an OS base image (by specifying
FROM ubuntu:15.10 in the Dockerfile) for all the
Docker containers in our experiments. Note that
a container’s OS base image is only a file system
representation, while not acting as a guest OS.

The workload-related factors:

• Duration: For each evaluation experiment, we
decided to take a whole-day observation plus
one-hour warming up (i.e. 25 hours).

• Workload Size: The experimental workloads are
predefined by the selected benchmarks. For
example, the micro-benchmark CPU Fibonacci
generates workload by calculating the 42nd Fi-
bonacci number (cf. Table 2). In particular,
the benchmark Bonnie++ distinguishes between
reading/writing byte-size and block-size data.

3.2.5 Experimental Design

It is clear that the identified factors are all with single
value except for the Resource Type. Therefore, a straight-
forward design is to run the individual benchmarks on
each of the three types of resources independently for
a whole day plus one hour.

Furthermore, following the conceptual model of
IaaS performance evaluation [19], we record the exper-
imental design into a blueprint both to facilitate our
experimental implementations and to help other eval-
uators replicate/repeat our study. In particular, the

experimental elements are divided into three layers
(namely Layer Workload, Layer Resource, and Layer
Capacity), as shown in Figure 3. To avoid duplica-
tion, we do not elaborate the detailed elements in this
blueprint.

3.3 Experimental Results and Analyses

3.3.1 Communication Evaluation Result and Anal-
ysis

Docker creates a virtual bridge docker0 on the host
machine to enable both the host-container and the
container-container communications. In particular, it
is the Network Address Translation (NAT) that for-
wards containers’ traffic to external networks. For the
purpose of “apple-to-apple” comparison, we also con-
figure VM’s network type as NAT that uses the VMnet8
virtual switch created by VMware Workstation.

Using NAT, both Docker containers and VMs can
establish outgoing connections by default, while they
require port binding/forwarding to accept incoming
connections. To reduce the possibility of configura-
tional noise, we only test the outgoing communication
performance, by setting the remote EC2 instance to
Iperf server and using the local machine, container and
VM all as Iperf clients.

The benchmarking results of repeating iperf -c

XXX.XXX.XXX.XXX -t 15 (with a one-minute interval
between every two consecutive trials) are listed in Ta-
ble 3. The XXX.XXX.XXX.XXX denotes the external IP
address of the EC2 instance used in our experiments.
Note that, unlike the other performance features, the
communication data throughput delivers periodical
and significant fluctuations, which might be a result
from the network resource competition at both our lo-
cal side and the EC2 side during working hours. There-
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fore, we particularly focus on the longest period of
relatively stable data out of the whole-day observation,
and thus the results here are for rough reference only.

Resource Type Average Standard Deviation

Physical machine 29.066 Mbits/sec 1.282 Mbits/sec

Container 28.484 Mbits/sec 1.978 Mbits/sec

Virtual machine 12.843 Mbits/sec 2.979 Mbits/sec

Table 3: Communication benchmarking results using
Iperf.

Given the extra cost of using the NAT network to
send and receive packets, there would be unavoidable
performance penalties for both the container and the
VM. Using Equation (1), we calculate their communica-
tion performance overheads, as illustrated in Figure 4.

Physical Machine Container Virtual Machine

average 29.06630058 28.48428928 12.84306931

stdev 1.282297571 1.978326959 2.978496178

Container Virtual Machine

Variability Overhead 54.27986481 132.27808

ppp 0 0

ttt 0 0

Data Throughput Overhead 2.002357673 55.81457202
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Figure 4: Communication data throughput and its
variability overhead of a standalone Docker container
vs. VM (using the benchmark Iperf).

A clear trend is that, compared to the VM, the con-
tainer loses less communication performance, with
only 2% data throughput overhead and around 54%
variability overhead. However, it is surprising to see
a more than 55% data throughput overhead for the
VM. Although we have double checked the relevant
configuration parameters and redone several rounds
of experiments to confirm this phenomenon, we still
doubt about the hypervisor-related reason behind such
a big performance loss. We particularly highlight this
observation to inspire further investigations.

3.3.2 Computation Evaluation Result and Analysis

Recall that HardInfo’s six micro benchmarks deliver
both “higher=better” and “lower=better” CPU scores
(cf. Table 2). To facilitate experimental analysis,
we use the two equations below to standardize the
“higher=better” and “lower=better” benchmarking re-
sults respectively.

HBi =
Benchmarkingi

max
(
Benchmarking1,2,...,n

) (2)

LBi =

1
Benchmarkingi

max
(

1
Benchmarking1,2,...,n

) (3)

where HBi further scores the service resource type i
by standardizing the “higher=better” benchmarking
result Benchmarkingi ; and similarly, LBi represents
the standardized “lower=better” CPU score of the ser-
vice resource type i. Note that Equation (3) essen-
tially offers the “lower=better” benchmarking results
a “higher=better” representation through reciprocal
standardization.

For the purpose of conciseness, here we only spec-
ify the standardized experimental results, as shown
in Table 4. Exceptionally, the container and VM have
slightly higher CPU N-Queens scores than the physical
machine. Given the predefined observational margin
of error (cf. Section 3.2.3), we are not concerned with
this trivial difference, while treating their performance
values as equal to each other in this case.

Benchmark Physical machine Container VM

CPU Blowfish 1 0.986 0.942

CPU CryptoHash 1 0.992 0.943

CPU Fibonacci 1 0.999 0.976

CPU N-Queens 0.996 1 0.997

FPU FFT 1 0.966 0.924

FPU Raytracing 1 0.968 0.941

Table 4: Standardized computation benchmarking results using
HardInfo.

We can further use a radar plot to help ignore the
trivial number differences, and also help intuitively
contrast the performance of the three resource types,
as demonstrated in Figure 5. For example, the differ-
ent polygon sizes clearly indicate that the container
generally computes faster than the VM, although the
performance differences are on a case-by-case basis
with respect to different CPU job types.
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Figure 5: Computation benchmarking results by using
HardInfo.

Nevertheless, our experimental results do not dis-
play any general trend in variability of those resources’
computation scores. As can be seen from the calcu-
lated performance overheads (cf. Figure 6), the VM
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does not even show worse variability than the phys-
ical machine when running CPU CryptoHash, CPU
N-Queens and FPU Raytracing. On the contrary, there
is an almost 2500% variability overhead for the VM
when calculating the 42nd Fibonacci number. In par-
ticular, the virtualization technologies seem to be sensi-
tive to the Fourier transform jobs (the benchmark FPU
FFT), because the computation latency overhead and
the variability overhead are relatively high for both the
container and the VM.
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Figure 6: Computation latency (score) and its variabil-
ity overhead of a standalone Docker container vs. VM
(using the tool kit HardInfo).

3.3.3 Memory Evaluation Result and Analysis

STREAM measures sustainable memory data through-
put by conducting four typical vector operations,
namely Copy, Scale, Add and Triad. The memory
benchmarking results are listed in Table 5. We fur-
ther visualize the results into Figure 7 to facilitate our
observation. As the first impression, it seems that the
VM has a bit poorer memory data throughput, and
there is little difference between the physical machine
and the Docker container in the context of running
STREAM.

Operation (MB/s) Physical
machine

Container VM

Copy 2902.685 2914.023 2818.291

(Std. Dev.) (4.951) (12.579) (57.633)

Scale 2916.247 2910.485 2765.737

(Std. Dev.) (3.783) (14.488) (59.193)

Add 3335.634 3332.822 3159.188

(Std. Dev.) (3.765) (14.405) (58.385)

Triad 3341.327 3340.416 3204.811

(Std. Dev.) (3.976) (26.361) (59.004)

Table 5: Memory benchmarking results using
STREAM.

By calculating the performance overhead in terms
of memory data throughput and its variability, we are
able to see the significant difference among these three

types of resources, as illustrated in Figure 8. Take
the operation Triad as an example, although the con-
tainer performs as well as the physical machine on
average, the variability overhead of the container is
more than 500%; similarly, although the VM’s Triad
data throughput overhead is around 4% only, its vari-
ability overhead is almost 1400%. In other words, the
memory performance loss incurred by both virtualiza-
tion techniques is mainly embodied with the increase
in the performance variability.
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Figure 7: Memory benchmarking results by using
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Figure 8: Memory data throughput and its variabil-
ity overhead of a standalone Docker container vs. VM
(using the benchmark STREAM).

In addition, it is also worth notable that the con-
tainer’s average Copy data throughput is even slightly
higher than the physical machine (i.e. 2914.023MB/s
vs. 2902.685MB/s) in our experiments. Recall that we
have considered a 1% margin of error. Since those two
values are close to each other within this error margin,
here we ignore such an irregular phenomenon as an
observational error.

3.3.4 Storage Evaluation Result and Analysis

For the test of disk reading and writing, Bonnie++
creates a dataset twice the size of the involved RAM
memory. Since the VM is allocated 2GB of RAM, we
also restrict the memory usage to 2GB for Bonnie++
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on both the physical machine and the container, by
running “sudo bonnie++ -r 2048 -n 128 -d / -u

root”. Correspondingly, the benchmarking trials are
conducted with 4GB of random data on the disk. When
Bonnie++ is running, it carries out various storage op-
erations ranging from data reading/writing to file cre-
ating/deleting. Here we only focus on the performance
of reading/writing byte- and block-size data.

To help highlight several different observations, we
plot the trajectory of the experimental results along the
trial sequence during the whole day, as shown in Figure
9. The first surprising observation is that, all the three
resource types have regular patterns of performance
jitter in block writing, rewriting and reading. Due to
the space limit, we do not report their block rewriting
performance in this paper. By exploring the hardware
information, we identified the hard disk drive (HDD)
model to be ATA Hitachi HTS54161, and its specifi-
cation describes “It stores 512 bytes per sector and
uses four data heads to read the data from two plat-
ters, rotating at 5,400 revolutions per minute”. As we
know, the hard disk surface is divided into a set of con-
centrically circular tracks. Given the same rotational
speed of an HDD, the outer tracks would have higher
data throughput than the inner ones. As such, those
regular patterns might indicate that the HDD heads
sequentially shuttle between outer and inner tracks
when consecutively writing/reading block data during
the experiments.

The second surprising observation is that, unlike
most cases in which the VM has the worst performance,
the container seems significantly poor at accessing the
byte size of data, although its performance variability
is clearly the smallest. We further calculate the storage
performance overhead to deliver more specific com-
parison between the container and the VM, and draw
the results into Figure 10. Note that, in the case when
the container’s/VM’s variability is smaller than the
physical machine’s, we directly set the corresponding
variability overhead to zero rather than allowing any
performance overhead to be negative. Then, the bars
in the chart indicate that the storage variability over-
heads of both virtualization technologies are nearly
negligible except for reading byte-size data on the VM
(up to nearly 200%). The lines show that the container
brings around 40% to 50% data throughput overhead
when performing disk operations on a byte-by-byte
basis. On the contrary, there is relatively trivial per-
formance loss in VM’s byte data writing. However,
the VM has roughly 30% data throughput overhead in
other disk I/O scenarios, whereas the container barely
incurs overhead when reading/writing large size of
data.

Our third observation is that, the storage perfor-
mance overhead of different virtualization technolo-
gies can also be reflected through the total number
of the iterative Bonnie++ trials. As pointed by the
maximum x-axis scale in Figure 9, the physical ma-
chine, the container and the VM can respectively fin-
ish 150, 147 and 101 rounds of disk tests during 24
hours. Given this information, we estimate the con-

tainer’s and the VM’s storage performance overhead to
be 2% (= |147−150|/150) and 32.67% (= |101−150|/150)
respectively.
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Figure 10: Storage data throughput and its variability overhead
of a standalone Docker container vs. VM (using the benchmark
Bonnie++).

3.4 Performance Evaluation Conclusion

Following the performance evaluation methodology
DoKnowMe, we draw conclusions mainly by answer-
ing the predefined requirement questions. Driven by
RQ1 and RQ2, our evaluation result largely confirms
the aforementioned qualitative discussions: The con-
tainer’s average performance is generally better than
the VM’s and is even comparable to that of the physical
machine with regarding to many features. Specifically,
the container has less than 4% performance overhead
in terms of communication data throughput, compu-
tation latency, memory data throughput and storage
data throughput. Nevertheless, the container-based
virtualization could hit a bottleneck of storage transac-
tion speed, with the overhead up to 50%. Note that, as
mentioned previously, we interpret the byte-size data
throughput into storage transaction speed, because
each byte essentially calls a disk transaction here. In
contrast, although the VM delivers the worst perfor-
mance in most cases, it could perform as well as the
physical machine when solving the N-Queens prob-
lem or writing small-size data to the disk. By further
comparing the storage filesystems of those two types
of virtualization technologies, we believe that it is the
copy-on-write mechanism that makes containers poor
at storage transaction speed.

Driven by RQ3 and RQ4, we find that the perfor-
mance loss resulting from virtualizations is more vis-
ible in the performance variability. For example, the
container’s variability overhead could reach as high as
over 500% with respect to the Fibonacci calculation
and the memory Triad operation. Similarly, although
the container generally shows less performance vari-
ability than the VM, there are still exceptional cases:
The container has the largest performance variation in
the job of computing Fourier transform, whereas even
the VM’s performance variability is not worse than
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Figure 9: Storage benchmarking results by using Bonnie++ during 24 hours. The maximum x-axis scale
indicates the iteration number of the Bonnie++ test (i.e. the physical machine, the container and the VM run
150, 147 and 101 tests respectively).

the physical machine’s when running CryptoHash, N-
Queens, and Raytracing jobs.

4 Container-based Application
Case Study and Performance Op-
timization

4.1 Motive from a Background Project

Adequate pricing techniques play a key role in success-
ful Cloud computing [20]. In the de facto Cloud mar-
ket, there are generally three typical pricing schemes,
namely on-demand pricing scheme, reserved pricing
scheme, and spot pricing scheme. Although the fixed
pricing schemes are dominant approaches to trad-
ing Cloud resources nowadays, spot pricing has been
broadly agreed as a significant supplement for building
a full-fledged market economy for the Cloud ecosystem
[21]. Similar to the dynamic pricing in the electricity
distribution industry, the spot pricing scheme here also
employs a market-driven mechanism to provide spot
service at a reduced and fluctuating price, in order to
attract more demands and better utilize idle compute
resources [22].

Unfortunately, the backend details behind chang-
ing spot prices are invisible for most of the Cloud
market participants. In fact, unlike the static and

straightforward pricing schemes of on-demand and
reserved Cloud services, the market-driven mechanism
for pricing Cloud spot service has been identified to be
complicated both for providers to implement and for
consumers to understand.

Therefore, it has become popular and valuable to
take Amazon’s spot service as a practical example to
investigate Cloud spot pricing, so as to encourage and
facilitate more players to enter the Cloud spot market.
We are currently involved in a project on Cloud spot
pricing analytics by using the whole-year price his-
tory of Amazon’s 1053 types of spot service instances.
Since Amazon only offers the most recent 60-day price
trace to the public for review, we downloaded the price
traces monthly in the past year to make sure the com-
pleteness of the whole-year price history.

In this way of downloading price traces, it is clear
that around half of the overall raw data are duplicate.
Moreover, the original price trace is sorted by the times-
tamp only, as shown in Table 6. To analyze spot service
pricing on an instance-by-instance basis, however, the
collected price data need not only to be sorted by times-
tamp but also to be distinguished by the other three
attributes, i.e. Instance Type, Operating System and
Zone. Thus, we decided to implement a preprocessing
program to help clean the data, including removing the
duplicate price records and categorizing price traces
for individual service instances.
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Tag Price ($) Timestamp Instance Type Operating System Zone

SPOTINSTANCEPRICE 0.072700 2017-10-04T13:39:11+0000 m1.large Windows us-east-1a

SPOTINSTANCEPRICE 0.552500 2017-10-04T13:39:11+0000 c3.8xlarge SUSE Linux us-east-1b

SPOTINSTANCEPRICE 0.546700 2017-10-04T13:39:11+0000 c3.8xlarge SUSE Linux us-east-1e

SPOTINSTANCEPRICE 0.452500 2017-10-04T13:39:11+0000 c3.8xlarge Linux/UNIX us-east-1b

SPOTINSTANCEPRICE 0.446700 2017-10-04T13:39:11+0000 c3.8xlarge Linux/UNIX us-east-1e

SPOTINSTANCEPRICE 0.400800 2017-10-04T13:39:11+0000 c3.2xlarge Windows (Amazon VPC) us-east-1e

SPOTINSTANCEPRICE 0.417800 2017-10-04T13:39:11+0000 c3.4xlarge SUSE Linux us-east-1c

SPOTINSTANCEPRICE 0.317800 2017-10-04T13:39:11+0000 c3.4xlarge Linux/UNIX us-east-1c

SPOTINSTANCEPRICE 0.039600 2017-10-04T13:39:10+0000 m1.small SUSE Linux us-east-1b

SPOTINSTANCEPRICE 0.009600 2017-10-04T13:39:10+0000 m1.small Linux/UNIX us-east-1b

SPOTINSTANCEPRICE 0.434100 2017-10-04T13:39:10+0000 i3.2xlarge SUSE Linux (Amazon VPC) us-east-1c

SPOTINSTANCEPRICE 0.334100 2017-10-04T13:39:10+0000 i3.2xlarge Linux/UNIX (Amazon VPC) us-east-1c

SPOTINSTANCEPRICE 0.200000 2017-10-04T13:39:09+0000 c4.large SUSE Linux (Amazon VPC) us-east-1d

SPOTINSTANCEPRICE 0.100000 2017-10-04T13:39:09+0000 c4.large Linux/UNIX (Amazon VPC) us-east-1d

SPOTINSTANCEPRICE 0.281700 2017-10-04T13:39:09+0000 m3.2xlarge Windows (Amazon VPC) us-east-1c

SPOTINSTANCEPRICE 0.211200 2017-10-04T13:39:09+0000 m2.xlarge SUSE Linux us-east-1d

SPOTINSTANCEPRICE 0.111200 2017-10-04T13:39:09+0000 m2.xlarge Linux/UNIX us-east-1d

Table 6: A small piece of Amazon’s spot price trace.

4.2 WordCount-alike Solution

Given the aforementioned requirement of data clean-
ing, we propose a WordCount-alike solution by analogy.
WordCount is a well-known application that calculates
the numbers of occurrences of different words within
a document or word set. In the domain of big data
analytics, WordCount is now a classic application to
demonstrate the MapReduce mechanism that has be-
come a standard programming model since 2004 [23].
As shown in Figure 11, the key steps in a MapReduce
workflow are:
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Figure 11: Workflow of the MapReduce process.

(1) The initial input source data are segmented into
blocks according to the predefined split function
and saved as a list of key-value pairs.

(2) The mapper executes the user-defined map func-
tion which generates intermediate key-value
pairs.

(3) The intermediate key-value pairs generated by
mapper nodes is sent to a specific reducer based
on the key.

(4) Each reducer computes and reduces the data to
one single key-value pair.

(5) All the reduced data are integrated into the final
result of a MapReduce job.

Benefiting from MapReduce, applications like
WordCount can deal with large amounts of data paral-
lelly and distributedly. For the purpose of conciseness,
we use a three-file scenario to demonstrate the process
of MapReduce-based WordCount, as illustrated in Fig-
ure 12. In brief, the input files are broken into a set of
<key, value> pairs for individual words, then the <key,
value> pairs are shuffled alphabetically to facilitate
summing up the values (i.e. the occurrence counts) for
each unique key, and the reduced results are also a set
of <key, value> pairs that directly act as the output in
this case. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Input: 

File1: Hello World Bye World 

File2: Hello Docker Bye Docker 

File3: Hello Hadoop Bye Hadoop 

Map: 
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Figure 12: A Three-file Scenario of MapReduce-based
WordCount.

Recall that the information of Amazon’s spot price
trace is composed of Tag, Price, Timestamp, Instance
Type and Zone (cf. Table 6). By considering the value
in each information field to be a letter, we treat every
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single spot price record as an English word. For ex-
ample, by random analogy, the spot price record “tag
price1 time1 OS1 zone1” can be viewed as a six-letter
word like “Hadoop”, as highlighted in Figure 13.
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Figure 13: Treating spot price records as six-letter
words.

As such, we are able to follow the logic of Word-
Count to fulfill the needs of cleaning our collected spot
price history. In particular, instead of summing up the
occurrences of the same price records, the duplicate
records are simply ignored (removed). Moreover, the
price records are sorted by the order of values of In-
stance Type, Operating System, Zone and Timestamp
sequentially during the shuffling stage, while Tag and
Price are not involved in data sorting. To avoid duplica-
tion, here we do not further elaborate the MapReduce-
based data cleaning process.

4.3 Application Environment and Imple-
mentation

Unlike using “just-enough” environment for micro-
level performance evaluation, here we employ
“fair-enough” hardware resource to implement the
MapReduce-based WordCount application, as listed in
Table 7. In detail, the physical machine is Dell Pow-
erEdge T110 II with the CPU model Intel Xeon E3-1200
series E3-1220 / 3.1 GHz. When preparing the MapRe-
duce framework, we choose Apache Hadoop 2.7.0 [24]
running in the operating system Ubuntu Server 16.04,
and using Docker containers to construct a Hadoop
cluster. In particular, Docker allows us to create an ex-
clusive bridge network for the Hadoop cluster by using
a specific name, e.g., sudo docker network create

--driver=bridge cluster.

Environmental Item Specification

Physical Machine Dell PowerEdge T110 II

Operating System Ubuntu Server 16.04

Java Environment JDK 1.8.0

MapReduce Framework Hadoop 2.7.0

Table 7: Summary of application environment.

In our initial implementation, we realized a three-
node Hadoop cluster by packing Hadoop 2.7.0 into a
Docker image and starting one master container and
two slave ones. As illustrated in Figure 14, such a
Hadoop cluster can logically be divided into a dis-
tributed processing layer (i.e. MapReduce workflow)
and a distributed file-system layer (i.e. Hadoop Dis-
tributed File System (HDFS) in this case). When run-
ning a MapReduce application, the main interactions
are:

 

 

 

 

 

 

Secondary 
NameNode 

MapReduce 

layer 

HDFS 

layer 

Master 

DataNode 

TaskTracker 

Slave 

NameNode 

JobTracker 

DataNode 

TaskTracker 

Slave 

Figure 14: A three-node Hadoop cluster.

(1) A MapReduce job can run in a Hadoop cluster.

(2) The JobTracker in the cluster accepts a job from
the MapReduce application, and locates relevant
data through the NameNode.

(3) Suitable TaskTrackers are selected and then ac-
cept the tasks delivered by the JobTracker.

(4) The JobTracker communicates with the Task-
Trackers and manages failures.

(5) When the collaboration among the TaskTrackers
finish the job, the JobTracker updates its status
and returns the result.

4.4 Performance Optimization Strategies

It is known that the performance of MapReduce ap-
plications can be tuned by adjusting the various pa-
rameters in the three configuration files of Hadoop.
However, it is also clear that there is no one-size-fits-
all approach to performance tuning. Therefore, we
conducted a set of performance evaluation of our data
cleaning application, in order to come up with a set of
optimization strategies at least for this case.

• Setting Timeout for Tasks. A map or reduce
task can be blocked or failed during runtime for
various reasons, which would slow down the ex-
ecution, and even result in the failure, of the
whole MapReduce job. Therefore, by using Task-
Tracker to kill the blocked/failed tasks after a
proper time span, those tasks will be able to be
relaunched to save some waiting time. Given
our relatively small size of data, we reduce the
default timeout value from ten minutes to one
minute, as shown below.

www.astesj.com 532

http://www.astesj.com


Z. Li et al. / Advances in Science, Technology and Engineering Systems Journal Vol. 3, No. 1, 521-536 (2018)

<!--Configuration in mapred-site.xml-->

<property>

<name>mapred.task.timeout</name>

<value>60000</value>

</property>

• Turn on Out-of-Band Heartbeat. Unlike regular
heartbeats, the out-of-band heartbeat is triggered
when a task is complete or failed. As such, Job-
Tracker will be noticed the first time when there
are free resources, so as to assign them to new
tasks and eventually to save time. The config-
uration for turning on out-of-band heartbeat is
specified as follows.

<!--Configuration in mapred-site.xml-->

<property>

<name>mapreduce.tasktracker.

outofband.heartbeat</name>

<value>true</value>

</property>

• Setting Buffer. To begin with, we are concerned
with a threshold percentage of buffer, and a back-
ground thread will be issued to spill buffer con-
tents to hard disk when the threshold is reached.
Inspired by the storage micro-benchmarking re-
sults (cf. Section 3.3.4), we decided to increase
the threshold from 80% to 90% of buffer. As
for the amount of memory to be buffer size, we
double the default value (i.e. 100MB) for an intu-
itive test. These two parameters can be adjusted
respectively as shown below.

<!--Configuration in mapred-site.xml-->

<property>

<name>io.sort.spill.percent</name>

<value>0.9</value>

</property>

<property>

<name>io.sort.mb</name>

<value>200</value>

</property>

• Merging Spilled Streams. As a continuation of
spilling buffer contents to hard disk, the inter-
mediate streams from multiple spill threads are
merged into one single sorted file per partition
which is to be fetched by reducers. Thus, we can
control how many of spills will be merged into
one file at a time. Since the smaller merge factor
incurs more parallel merge activities and more
disk IO for reducers, we decided to increase the
merge value from 10 to 100, as shown below.

<!--Configuration in mapred-site.xml-->

<property>

<name>io.sort.factor</name>

<value>100</value>

</property>

• LZO Compression. Recall that the data we are
dealing with are plain texts. The text data can
generally be compressed significantly to reduce
the usage of hard disk space and transmission
bandwidth, and correspondingly to save the time

taken for data copying/transferring. As a loss-
less algorithm with high decompression speed,
Lempel-Ziv-Oberhumer (LZO) is one of the com-
pression mechanisms supported by the Hadoop
framework. In addition to various benefits and
characteristics in common, LZO’s block structure
is particularly split-friendly for parallel process-
ing in MapReduce jobs [25]. Therefore, we install
and enable LZO for Hadoop by specifying the
configurations below.

<!--Configuration in core-site.xml-->

<property>

<name>io.compression.codecs</name>

<value>org.apache.hadoop.io.compress.

GzipCodec,org.apache.hadoop.

io.compress.DefaultCodec,

com.hadoop.compression.lzo.

LzoCodec,com.hadoop.

compression.lzo.LzopCodec,

org.apache.hadoop.io.compress.

BZip2Codec</value>

</property>

<property>

<name>io.compression.codec.

lzo.class</name>

<value>com.hadoop.compression.

lzo.LzoCodec</value>

</property>

<!--Configuration in mapred-site.xml-->

<property>

<name>mapreduce.map.output.

compress</name>

<value>true</value>

</property>

<property>

<name>mapreduce.map.output.

compress.codec</name>

<value>com.hadoop.compression.

lzo.LzoCodec</value>

</property>

• Doubling Slave Nodes. In distributed comput-
ing, a common scenario is to employ more re-
sources to deal with more workloads. Recall that
map and reduce tasks of a MapReduce job are
distributed to the slave nodes in a Hadoop clus-
ter, and the physical machine used in this study
has a Quad-Core processor. To obtain some quick
clues at this current stage, we try to improve our
application’s performance by doubling the slave
nodes, i.e. extending the original three-node clus-
ter (with two slave nodes) into a five-node one
(with four slave nodes). Note that, in this opti-
mization strategy, we keep the other configura-
tions settings by default.

4.5 Performance Evaluation Results

Due to the time limit, we follow “one factor at a time”
to perform evaluation of the aforementioned optimiza-
tion strategies. Furthermore, to confirm the effects of
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these optimization strategies, we are concerned with
2GB+ and 5GB+ data respectively in the performance
evaluation. Correspondingly, we draw the evaluation
results in Figure 15 and 16 respectively.
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Figure 15: Performance optimization for 2GB+ data
cleaning.

The results show three relatively different patterns
of optimization effects. First, LZO compression acts
as the most effective optimization strategy, and it can
improve the performance nearly by 50% when dealing
with 2GB+ data. Second, we can expect similar and
moderate performance improvement by three individ-
ual strategies, such as merging more spilled streams,
reducing the timeout value, and doubling the slave
nodes. Third, out-of-band heartbeat and buffer set-
tings seem not to be influential optimization strategies
in this case.

These different optimization patterns could be
closely related to the data characteristics of our appli-
cation. On one hand, since text data can be compressed
significantly [26], our application mostly benefits from
the optimization strategy of LZO compression. On the
other hand, since the current price traces used in this
study are still far from “big data”, the buffer setting
could not take clear effects until the data size reaches
TB levels.
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Figure 16: Performance optimization for 5GB+ data
cleaning.

5 Related Work

Although the performance advantage of containers
were investigated in several pioneer studies [3, 27, 10],
the container-based virtualization solution did not gain
significant popularity until the recent underlying im-
provements in the Linux kernel, and especially until
the emergence of Docker [28, 29]. Starting from an
open-source project in early 2013 [7], Docker quickly
becomes the most popular container solution [2] by
significantly facilitating the management of containers.
Technically, through offering the unified tool set and
API, Docker relieves the complexity of utilizing the
relevant kernel-level techniques including the LXC,
the cgroup and a copy-on-write filesystem. To exam-
ine the performance of Docker containers, a molecular
modeling simulation software [30] and a postgreSQL
database-based Joomla application [31] have been used
to benchmark the Docker environment against the VM
environment.

Considering the uncertainty of use cases (e.g., dif-
ferent workload densities and QoS requirements), at
this current stage, a baseline-level investigation would
be more useful and helpful for understanding the fun-
damental difference in performance overhead between
those two virtualization solutions. A preliminary study
has particularly focused on the CPU consumption by
using the 100000! calculation within a Docker con-
tainer and a KVM VM respectively [32]. Nevertheless,
the concerns about other features/resources like mem-
ory and disk are missing. Similarly, the performance
analysis between VM and container in study [33] is
not feature-specific enough (even including security
that is out of the scope of performance). On the con-
trary, by treating Docker containers as a particular type
of Cloud service, our study considers the four physi-
cal properties of a Cloud service [15] and essentially
gives a fundamental investigation into the Docker con-
tainer’s performance overhead on a feature-by-feature
basis.

The closest work to ours is the IBM research report
on the performance comparison of VM and Linux con-
tainers [34]. In fact, it is this incomplete report (e.g.,
the container’s network evaluation is partially miss-
ing) that inspires our study. Surprisingly, our work
denies the IBM report’s finding “containers and VMs
impose almost no overhead on CPU and memory us-
age” that was also claimed in [35], and we also doubt
about “Docker equals or exceeds KVM performance in
every case”. In particular, we are more concerned with
the overhead in performance variability.

Within the context of MapReduce clusters, Xavier
et al. [10] conducted experimental comparisons among
the three aforementioned types of container-based vir-
tual environments, while a set of other studies partic-
ularly contrasted performance of OpenVZ with the
hypervisor-based virtualization implementations in-
cluding VMWare, Xen and KVM [3, 27]. The signifi-
cant difference between these studies and ours is that
we focus more on the performance optimization of a
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container-based MapReduce cluster in a specific appli-
cation scenario.

Note that, although there are also performance
studies on deploying containers inside VMs (e.g.,
[36, 37]), such a redundant structure might not be
suitable for an “apple-to-apple” comparison between
Docker containers and VMs, and thus we do not in-
clude this virtualization scenario in our study.

6 Conclusions and Future Work

It has been identified that virtualization is one of the
foundational elements of Cloud computing and helps
realize the value of Cloud computing [38]. On the
other hand, the technologies for virtualizing Cloud
infrastructures are not resource-free, and their perfor-
mance overheads would incur negative impacts on the
QoS of the Cloud. Since hypervisors that currently
dominate the Cloud virtualization market are a rela-
tively heavyweight solution, there comes a rising trend
of interest in its lightweight alternative [7], namely
the container-based virtualization. Their mechanism
difference is that, the former manages the host hard-
ware resources, while the latter enables sharing the
host OS. Although straightforward comparisons can
be done from the existing qualitative discussions, we
conducted a fundamental evaluation study to quan-
titatively understand the performance overheads of
these two different virtualization solutions. In particu-
lar, we employed a standalone Docker container and a
VMWare Workstation VM to represent the container-
based and the hypervisor-based virtualization tech-
nologies respectively.

Recall that there are generally two stages of per-
formance engineering in ECS, for revealing the pri-
mary performance of specific (system) features and
investigating the overall performance of real-world
applications respectively. In addition to the fundamen-
tal performance of a single container, we also studied
performance optimization of a container-based MapRe-
duce application in terms of cleaning Amazon’s spot
price history. At this current stage, we only focused
on one factor at a time to evaluate the optimization
strategies ranging from setting task timeout to dou-
bling slave nodes.

Overall, our work reveals that the performance
overheads of these two virtualization technologies
could vary not only on a feature-by-feature ba-
sis but also on a job-to-job basis. Although the
container-based solution is undoubtedly lightweight,
the hypervisor-based technology does not come with
higher performance overhead in every case. At the
application level, the container technology is clearly
more resource-friendly, as we failed in building VM-
based MapReduce clusters on the same physical ma-
chine. When it comes to container-based MapReduce
applications, it seems that the effects of performance
optimization strategies are closely related to the data
characteristics. For dealing with text data in our case
study, LZO compression can bring the most significant

performance improvement.
Due to the time and resource limit, our current in-

vestigation into the performance of container-based
MapReduce applications is still an early study. Thus,
our future work will be unfolded along two directions.
Firstly, we will adopt sophisticated experimental de-
sign techniques (e.g., the full-factorial design) [39] to
finalize the same case study on tuning the MapReduce
performance of cleaning Amazon’s price history. Sec-
ondly, we will gradually apply Docker containers to
different real-world applications for dealing with dif-
ferent types of data. By employing “more-than-enough”
computing resource, the application-oriented practices
will also be replicated in the hypervisor-based virtual
environment for further comparison case studies.
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